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Abstract. The properties of two-dimensional ensembles of magnetic nanoparticles that interact by mag-
netic dipole coupling are investigated. The low-temperature magnetic arrangements, the average binding
energy Edip due to dipolar interactions, and its scaling behavior with respect to the particle density
C are calculated for different types of structural disorder and particle-size distributions. Many different
metastable magnetic states are obtained, which exhibit strong noncollinearities and are reminiscent of a
spin-glass behavior. For a given C, |Edip| increases with increasing disorder of the particle positions. For
random distributions at low particle densities C ≤ 0.2, Edip is dominated by the contributions of short
interparticle distances. Thus, it scales as |Edip| ∝ Cα with an unusually small exponent α = 0.85–1. The
straightforward scaling of the dipole interaction, α � 3/2, is obtained only for C ≥ 0.5 or for nearly periodic
ensembles. The finite temperature behavior of these disordered interacting nanomagnets is explored. The
specific heat and magnetic susceptibility are calculated by performing Monte Carlo simulations. The onset
of long-range magnetic order is discussed. In addition we determine hysteresis loops at finite temperatures
and compare the results for different degrees of disorder.

PACS. 75.75.+a Magnetic properties of nanostructures – 75.50.Lk Spin glasses and other random magnets
– 75.40.Mg Numerical simulation studies

1 Introduction

The properties of interacting magnetic nanostructured
materials are currently the subject of a very intense re-
search activity which is driven both by their fundamental
interest and by the perspectives of technological applica-
tions [1]. Numerous experimental and theoretical studies
have been performed on various two-dimensional (2D) and
three-dimensional (3D) arrangements having different de-
grees of structural and magnetic disorder [2–5]. In these
systems the magnetic particles are sufficiently small so
that they usually stay in a single-domain magnetic state.
Therefore, they can be viewed as giant classical mag-
netic moments (Stoner-Wohlfahrt particles). The mag-
netic behavior of nanostructured materials is conditioned
by single-particle properties, such as lattice and shape
anisotropies, and by interparticle interactions. The latter
comprises the magnetic dipole coupling, the indirect ex-
change or Rudermann-Kittel-Kasuya-Yosida (RKKY) in-
teraction mediated by the conduction electrons of a metal
substrate, and the short-range direct exchange interac-
tion in case of direct particle contact. The relative impor-
tance of these contributions can be tuned experimentally
to some extent by changing the sample characteristics,
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like particle-size distribution, nanostructure morphology,
or average interparticle distance. For low particle concen-
tration C the interactions can be treated as a perturbation
to the single-particle contributions. However, with increas-
ing C the interparticle couplings tend to dominate and
the single-particle approach is no longer applicable [3–5].
Therefore, in the most relevant case of large coverage, an
explicit treatment of the interactions is crucial.

The nonuniform and competing nature of the magnetic
couplings between the particles and the presence of sig-
nificant disorder in the nanostructure (particle size- and
shape dispersion, positional disorder, random anisotropy
axes) result in a magnetic order which is similar to the
one of a spin-glass system [6]. Consequently, many dif-
ferent metastable states exist, which are characterized by
strong magnetic noncollinearities. Taking into account the
complexity of this problem, it is of considerable interest
to determine how the magnetic order or the interaction
energy depends on sample parameters, particularly in the
presence of disorder. Comparison between theory and ex-
periment could then be used to infer the intrinsic micro-
scopic parameters of the system and to optimize the sam-
ple characteristics for a given specific magnetic response.

From a fundamental standpoint, an intriguing open
question is to understand to what extent the interac-
tions may result in a collectively ordered magnetic state of
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such a disordered particle ensemble. For a dipole-coupled
square layer, the ground state is the so-called columnar
magnetic arrangement with a vanishing net magnetiza-
tion. The parallel (ferromagnetic) alignment is a meta-
stable state. Despite the fact that the dipole coupling it-
self is not rotationally invariant, the square layer exhibits
a continuous rotational degeneracy for classical spins at
T = 0. This accidental degeneracy is caused by the sym-
metry of the lattice, and any deviation from this periodic
structure would lift the degeneracy. A long-range magnetic
order is therefore not expected for a square layer at finite
temperatures, due to the Mermin-Wagner theorem. How-
ever, as already shown by Monte Carlo (MC) studies and
interacting spin-wave theory, a magnetic ordering with
finite critical temperature does exist for dipole-coupled
spins on a square lattice, since the magnetic excitations
are not continuously degenerate [7]. This behavior is an
example of the “order-by-disorder” effect in frustrated
magnets [8]. Thermal fluctuations or lattice disturbances
partly remove frustrations, and a collective magnetic order
may emerge. On the other side, a random structural dis-
order or vacancies introduce easy axes along the lattice di-
agonals. Thus, the ordering effects of dispersion of particle
positions and thermal agitations compete with each other.
The magnetic binding energy and the magnetic arrange-
ments are important to determine the long-range magnetic
order and the critical temperature.

Several experiments on interacting high-density fer-
rofluid systems indicate the onset of a collectively ordered
state below a characteristic concentration-dependent tem-
perature [3]. Furthermore, recent measurements on Co is-
lands deposited on Cu(001) exhibit a magnetic hystere-
sis and remanence in the temperature range up to 100 K
also for coverages below the magnetic percolation thresh-
old [9]. These findings cannot be explained by single-
particle blocking effects, due to the very small size of the
Co islands. Notice that a precise experimental determina-
tion of the ordering temperature is a difficult task, since
the relaxation times are often very long.

The purpose of this communication is to report on cur-
rent simulations of ground-state and finite-temperature
properties of 2D disordered magnetic nanostructures. In
Section 2 the modelisation of the problem is briefly de-
scribed. Results for low temperature properties like the
average dipole energy per particle are presented and
discussed in Section 3. Section 4 is concerned with the
temperature dependence of magnetic susceptibilities and
hysteresis loops and with the possible onset of long-range
order. We conclude in Section 5 by pointing out some rel-
evant extensions.

2 Model

The magnetic nanostructures are modeled by considering
a 2D rectangular L × L unit cell with non-overlapping,
disk- or sphere-shaped magnetic particles. An infinitely
extended particle ensemble is obtained by imposing peri-
odic boundary conditions. Within the unit cell the parti-
cles can have different types of lateral arrangements: (i) a

periodic square array, where the particle centers are lo-
cated on the sites of a periodic lattice with lattice con-
stant R0, (ii) a disturbed or quasi-periodic array where
the particle centers deviate from the square array follow-
ing a Gaussian distribution P (R) with a standard devia-
tion σR, and (iii) a fully random distribution of particles
within the unit cell. Since the direct exchange interaction
between atomic magnetic moments is very strong, each
particle i can be viewed as a single magnetic domain car-
rying a giant spin Mi ∼ Niµat, where µat is the atomic
magnetic moment. For simplicity, we restrict the moments
to be confined to the xy-plane, their directions are then
defined by azimuthal angles φi. The particle sizes Ni, i.e.,
the number of spins in each particle, are taken to be ei-
ther the same for all particles, or dispersed around a mean
value N following a Gaussian or a log-normal distribution
with standard deviation σN .

The energy of a configuration of particle magnetic mo-
ments Mi is given by

H =
µ0

2

∑

i,j
i�=j

[
Mi ·Mj r2

ij − 3
(
rij · Mi

)(
rij · Mj

)]
r−5
ij

−µ0

∑

i

(B ·Mi) . (1)

The first term is the magnetic dipole interaction, where
rij = |rij | = |ri − rj | is the distance between the centers
of particles i and j, and µ0 the vacuum permeability. The
second term represents the Zeeman interaction with an
external magnetic field B, which enters in the calculation
of the magnetic response and hysteresis loops.

The infinite range of the dipole interaction is taken
into account by applying an Ewald-type summation over
all periodically arranged unit cells of the extended thin
film [10]. In addition to the usual point-dipole sum we
consider the leading correction resulting from the dipole-
quadrupole interaction. This so called area correction is
of the order (Ai + Aj)/r2

ij , with Ai ∝ Ni the area of par-
ticle i. For large particle coverages or small interparticle
distances, it can amount to 50% of the point dipole sum.
The atomic magnetic moment µat, given in Bohr magne-
tons µB , and the interatomic distance a0 define the unit
of dipole-coupling energy w = µ2

at/a3
0. For example, val-

ues appropriate to Fe (µat = 2.2µB and a0 = 2.5 Å) yield
w = 0.19 K.

3 Low temperature properties

The low-temperature magnetic configurations and the av-
erage dipole energy per particle are determined as follows.
Starting from an arbitrary initial guess {φ0

i } of the mag-
netic directions, the total magnetic energy of the system is
relaxed to the nearest local minimum by optimizing all the
in-plane angles φi using a conjugated gradient method.
In order to account for the many different local energy
minima in case of disorder, the magnetic dipole energy
Edip is averaged over many different initial guesses for the
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same particle arrangement. In addition, many different re-
alizations of the unit cell are considered, using the same
global variables which characterize the particle ensemble
(average size, standard deviations, etc.). For the sake of
comparison, Edip has been also calculated for a parallel
magnetization (φi = φp for all i). In this case Edip is
averaged over all in-plane orientations φp. The magnetic
energy is referred to the one of a random set of angles {φi}
for which Edip = 0.

The low temperature configurations of the magnetic
moments are strongly noncollinear with small or vanish-
ing net magnetization, a demagnetizing effect due to flux
closure. The magnetic-energy landscape exhibits a proba-
bly very large number of local minima which have, for the
most part, nearby energies and which are often separated
by small energy barriers. Note that these noncollinear ar-
rangements should not be considered as a disordered state,
since the local magnetizations are strongly correlated by
the dipole interaction.

The average magnetic dipole energy per island Edip has
been determined as a function of the standard deviation σr

which characterizes the positional disorder. One observes
that |Edip| increases with increasing disorder, reaching its
maximum for a fully random setup. The increase of |Edip|
with respect to the uniform system amounts to roughly
50%. In contrast, the island-size dispersion has no large ef-
fect on Edip. The different trends for these two types of dis-
order can be understood by recalling that Edip is a bilinear
function of the island sizes Ni. Thus, the size-dispersion
effect averages out for a symmetrical distribution of sizes
around the mean value N . On the other side, the depen-
dence on the interparticle distances, Edip ∝ r−3

ij , is nonlin-
ear. Thus, with increasing positional disorder, the decrease
of |Edip| for rij larger than average is more than counter-
balanced by the increase of |Edip| coming from smaller
values of rij between other pairs of islands. This leads to
an increase of the average magnetic binding energy of the
nanostructure [5].

The contributions of short interparticle distances are
also very important for the dependence of the magnetic
energy on particle concentration C. As shown in Figure 1,
Edip scales as |Edip| ∝ Cα with an unusually small expo-
nent α = 0.85–1. This is very different from the straight-
forward scaling of the dipole interaction, α � 3/2, which
is obtained only for C ≥ 0.5 or for nearly periodic en-
sembles. For a parallel magnetic arrangement the effective
exponent is αp � 1, which is not very far from the result
for relaxed arrangements. Therefore, part of the reduc-
tion of α, from 3/2 to 1, can be regarded as a dimensional
effect which is nearly independent of the complex low-
temperature magnetic order. Besides this, an additional
reduction of α, from 1 to about 0.85, is a consequence of
the noncollinear arrangement of the magnetic moments.

4 Temperature dependent properties

The finite-temperature properties have been investigated
by performing Metropolis MC simulations. As discussed in
the previous section, these systems are expected to show
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Fig. 1. Average dipole energy per particle Edip of a 2D ran-
dom ensemble of magnetic nanoparticles as a function of par-
ticle concentration C (logarithmic scale). Results are given for
relaxed arrangements of magnetic moments and assuming a
ferromagnetic alignment. Dashed (dotted) lines indicate the
power-law behavior Edip ∝ Cα with α = 1 (α = 3/2).

a spin-glass behavior, which is likely to result in a drastic
slowing down of the convergence of conventional simula-
tions. To overcome this problem of broken ergodicity, we
have improved the MC method using a parallel tempering
(PT) strategy [11,12]. The basic idea is to perform simul-
taneously all the simulations at the different temperatures
{Tα}, and to allow occasional exchanges between the con-
figurations of MC trajectories corresponding to adjacent
temperatures. At each step, with probability χ, the usual
local Metropolis moves are performed for all trajectories.
With probability 1−χ, an exchange is attempted between
a pair of randomly chosen adjacent trajectories having Tα

and Tγ = Tα+1. If we denote by Mα and Mγ the cor-
responding initial configurations at these respective tem-
peratures, then the probability for accepting the exchange
between them is given by [12]

acc(Mα � Mγ) = min [1, exp(−∆β∆E)] , (2)

where ∆β = 1/kBTα − 1/kBTγ and ∆E = H(Mα) −
H(Mγ).

In addition to the PT algorithm, we have also imple-
mented a more recent approach due to Wang and Landau
(WL) [13]. This method consists in calculating iteratively,
but directly, the microcanonical density of states by penal-
izing the statistical weight of each newly visited state. The
WL algorithm has been shown to be particularly efficient
for classical spin-glass systems [13]. The results reported
here were obtained considering a set of 50 temperatures
in the range 0 ≤ T ≤ 2 K and performing 1.5 × 106 MC
cycles for each trajectory, of which 5 × 105 cycles were
discarded for equilibration.

Figure 2 shows equilibrium properties of two magnetic
nanostructure arrays with different degrees of disorder: no
translational disorder and completely random location of
the particles. The size-dispersion is weak and the same in
both cases. All results have been averaged over 20 differ-
ent realizations of disorder. From a computational point
of view, one observes a very good agreement between the
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Fig. 2. Temperature dependence of the specific heat CV and
magnetization M of two-dimensional disordered nanostruc-
tures of small magnetic particles. The results correspond to
the parallel tempering (PT) algorithm except the dotted curve
in (a) which refers to the Wang-Landau (WL) algorithm.
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Fig. 3. Magnetization curves M(B) of 2D nanostructures of
magnetic particles as a function of applied magnetic field B.
Results are given for low (solid) and high (dotted) particle-size
dispersion.

PT and WL methods. This is a good indication that our
simulations have nearly converged. The peak in the heat
capacity CV (T ) of the weakly disordered system, and the
inflection point in the temperature dependence of the
magnetization M(T ), suggest the presence of a phase tran-
sition rounded by effect of the finite size L of the simula-
tion cell. Indeed, more extended calculations as a function
of L show a narrowing of the peak in CV (T ) for increasing
L. In case of important degree of disorder one observes a
significant broadening of the peak in CV (T ) and the dis-
appearance of all structure in M(T ). Notice that for weak
disorder and low temperatures (below the peak in CV )
the magnetization is maximum and that it rapidly drops
at T ∼ 0.6 K or by increasing disorder. This can be inter-
preted as the existence of a long-range-order phase which
is destroyed by structural disorder and/or by temperature.

Typical magnetization curves M(B) as a function of
applied magnetic field B are displayed in Figure 3. Two
different degrees of size dispersion are considered without
translational disorder. The step-like pattern in M(B) sug-
gests that the nanostructures have a very complex poten-
tial energy landscape. Small changes in the applied field
can make the system jump from a potential well to another
part of the landscape leading to sharp changes in the spin
configuration and in M . This picture is also supported
by the larger magnitude of the steps found upon increas-
ing disorder. Again, the results indicate a spin-glass-like
behavior of the magnetic nanostructures.

5 Conclusion

Several remarkable properties of two-dimensional ensem-
bles of interacting magnetic nanoparticles have been iden-
tified. The complex noncollinear nature of the low tem-
perature magnetic configurations whose stability increases
with disorder, the unusual scaling behavior of the mag-
netic energy as a function of particle concentration, the
possibility of long range magnetic order due to dipolar
interactions, or the complexity of the hysteresis loops
are some examples. Further investigations are certainly
needed in order to explore thoroughly the role of the dif-
ferent sample parameters and in order to shed light on
other related effects, such as the relaxation dynamics un-
der an external magnetic field, or the presence of spin-glass
transitions.
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